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• Why Vesta?

• What we learned about Vesta’s interior from gravity and 
topography

• Why Ceres?

• What we learned about Ceres’ interior from gravity and 
topography

• Compare evolutions of Vesta and Ceres

• Summary of findings
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Image credit: NASA/HST

Thomas et al., 1997



Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra
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 Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

 V-type asteroids spectra from Hardensen et 
al., (2014)



Why Vesta?

• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra

• Strongest connection between 
a class of meteorites and an 
asteroidal family
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 Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

 V-type asteroids spectra from Hardensen et 
al., (2014)



Interior structure modeling
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• Vesta is not presently in 
hydrostatic equilibrium 

• No unique solution only from 
gravity/topography, need an 
extra constraint

• Geochemically motivated 3-
layer interior structure 
(Ruzicka et al., 1997)

• Densities constrained by the 
Howardite-Eucrite-Diogenite
(HED) meteorites

Fe/Ni rich 
core

Olivine-rich
mantle

HED
crust



Bouguer Anomaly

Ermakov et al., 2014 9



• Vesta was likely close to 
hydrostatic equilibrium in its 
early history

• Major impact occurred when 
Vesta was effectively non-
relaxing 

• The areas >50° away from 
major impacts were not 
significantly deformed

• Crater counting reveals that 
the northern Vesta terrains 
are old (>3Gy)

• Northern terrains likely represent the pre-
impact shape of Vesta.
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Key results from thermal and impact modeling

Ermakov et al., 2014



Interior structure modeling
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Core radius of 110 to 155 km

Contours are mantle density [kg/m3]
• Vesta is not presently in 

hydrostatic equilibrium 

• No unique solution only from 
gravity/topography, need an 
extra constraint

• Geochemically motivated 3-
layer interior structure 
(Ruzicka et al., 1997)

• Densities constrained by the 
Howardite-Eucrite-Diogenite
(HED) meteorites



Ceres

12Image credit: NASA/JPL, DLR/MPS



Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds

13

Vesta

Ceres



What did we know before Dawn

• Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.

• Zolotov 2009

Ceres formed relatively late from planetesimals consisting of 
hydrated silicates. 

• Bland 2013

If Ceres does contain a water ice layer, its warm diurnally-
averaged surface temperature ensures extensive viscous 
relaxation of even small impact craters especially near equator
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Evidence for viscous relaxation
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• More general approach: 
study topography power 
spectrum

• Power spectra for Vesta 
closely fits with the 
power law to the lowest 
degrees (λ < 750 km)

• Ceres power spectrum 
deviates from the power 
law at λ > 270 km
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Latitude dependence of relaxation
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Ermakov et al., in prep

more relaxed 
equatorial 
topography
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• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

¶iui = 0

• Compute the evolution of 
the outer surface power 
spectrum

Finite element model

Fu et al., 2014; Fu et al, 
submitted to EPSL



Example of a FE modeling run
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core

shell

× plastic failure location



• Ceres crust is ~ 1000 times stronger than 
water ice

• Must be dominated by rock-like materials. 
water ice in the Ceres’ crust (<30 vol%)

• The rest is a combination of serpentine 
phyllosilicates, clathrates and/or salt

Finite element modeling results

19



Two-layer model
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• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters:
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)

2 = 0.392
Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2



Bouguer anomaly
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Ermakov et al., 
submitted to JGR



Bouguer anomaly
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negative correlation of Bouguer
anomaly with topography => 
isostatic compensation

Ermakov et al., 
submitted to JGR



Isostatic anomaly

23

Ermakov et al., 
submitted to JGR



Vesta and Ceres comparative evolution
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Vesta 

Ceres

Time

Presumably 
chondritic

chondritic + 
volatiles

Late accretion

Early accretion



Vesta and Ceres comparative evolution
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Vesta and Ceres comparative evolution
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Vesta and Ceres comparative evolution
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Present-state
Extensive water-
rock interactions

Ocean freezingLate accretion

Early accretion
magma ocean and 

differentiation

HED

giant impact into 
cool Vesta

HED

Present-state



• Formed early (< 5 My after CAI)
• Once hot and hydrostatic, Vesta is no longer either 
• Differentiated interior
• Most of topography acquired when Vesta was already cool 

=> uncompensated topography
• Despun by two giant collisions
• Combination of gravity/topography data with meteoritic 

geochemistry data provides constraints on the internal 
structure

• Formed late (> 5 My after CAI)
• Partially differentiated interior 
• Developed a subsurface ocean in the past
• Experienced limited viscous relaxation
• Much lower surface viscosities (compared to Vesta) allowed 

compensated topography 
• Ceres’ crust is light (based on admittance analysis) and strong 

(based on FE relaxation modeling)
• Not much water ice in Ceres crust (<30 vol%) now

Summary
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